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Background

A graph is a pair G = (V, E) with V a set of vertices and

E ⊆ {{x, y} : x, y ∈ V, x 6= y} a set of edges.
A directed graph is a graph whose edges have orientation and

can be expressed as G = (V, E) with
E ⊆ {(x, y) : (x, y) ⊆ V × V }.
Every finite graph may be expressed as an adjacency matrix

A ∈ Rn×n where

A(i, j) =

{
1 if vivj ∈ E

0 otherwise.

A clustering C of a graph G with n vertices is a collection of k
disjoint subgraphs such that 1 ≤ k ≤ n.
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Figure 1. The directed graph (left) G1 along with its adjacency matrix

representation (right). A possible clustering C1 = {C1, C2, C3} of G1 is shown.

Matrix and vector multiplication of adjacency matrices can
translate to graph operations.
For instance, in the graph above, Ak has the property that A(i, j) = x
means there exist x paths of length k from vertex i to vertex j.

Not all graph operations can be realized with traditional matrix

multiplication. Instead, use arbitrary semirings.

〈D, ⊕, ⊗, 0〉 is a GraphBLAS semiring if: (1) 〈D, ⊕, 0〉 is a
commutative monoid and (2) ⊗ is a closed binary operator.

C = AB ⇐⇒ C(i, j) =
n∑

k=1

A(i, k) · B(k, j) (Traditional)

C = A ⊕ . ⊗ B ⇐⇒ C(i, j) =
n⊕

k=1

A(i, k) ⊗ B(k, j). (Arbitrary)

Problem Statement

The GraphBLAS standard formalizes the notion of graph

algorithms as linear algebraic operations by providing a set of

well-defined matrix and vector operations based on semirings

[1]. In other words, the standard aims to provide a consistent

set of “building blocks” which can be used to create graph

algorithms in the language of linear algebra.

SuiteSparse:GraphBLAS is the first complete implementation

of the GraphBLAS C standard.
We seek to implement the following graph clustering
algorithms and cluster quality functions using
SuiteSparse:GraphBLAS:
Peer Pressure Clustering (PPC)

Markov Cluster Algorithm (MCL)

Quality metrics: Performance, Coverage, and Modularity (Q)

Peer Pressure Implementation
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(a) Initial clustering and first iteration.
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(b) Second iteration.
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(c) Third iteration.
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(d) Fourth iteration and final clustering.

Figure 2. Example of the peer pressure clustering algorithm on the working example [2]. Though not shown, each vertex has a self-edge.

1 C = I
2 while (True)
3 T = C (plus,second) A
4 m = ones (max,second) T
5 D = diag (m)
6 E = T (any,eq) D
7 m_index = ones (min,secondI) E
8 C_new = I(:, m_index)
9 if C ≈ C_new then return C
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Markov Cluster Implementation

1 while (True)
2 w = 1 ./ sum(A(:j)) // Normalize

columns↪→

3 // Compute MSE of subsequent transfer
matrices↪→

4 T = T^e // Expansion step
5 T = T .^ r // Inflation step
6 T = T(i, j) >= thr // Pruning step
7 // Terminate when MSE falls below some

small value↪→

Based on the idea of random walks in a network structure

[2].

Native linear algebraic formulation, so transfers directly

into GraphBLAS.

Two phases: expansion (random walks) and inflation

(heightens contrast between strong and weak connections)

Prune small values to keep T sparse.
Less interesting algorithm since T quickly becomes dense.

Cluster Quality Metrics

In order to say what makes a particular clustering “good,” quality
functions are needed.
Mainly based on the idea that reasonable clusters will have more

intra-cluster edges than inter-cluster edges.

Including, but not limited to, Coverage (Cov), Performance (Perf)
[3], and Modularity (Q) [4].

Cov(C) = |Eintra|
|E|

Perf(C) = |Eintra| + |Ninter|
n(n − 1)/2
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Q =
nc∑

c=1

[
Lc

|E|
−

(
d+

c · d−
c

2 · |E|

)]

Results

com-Youtube com-LiveJournal com-DBLP

n 1,134,890 3,997,962 317,080

nvals 2,987,624 34,681,189 1,049,866

PPC1 PPC2 MCL CDLP PPC1 PPC2 MCL CDLP PPC1 PPC2 MCL CDLP

Time (s) 6.084 2.324 18.16 22.47 39.48 50.15 54.28 79.04 2.653 0.7592 1.596 6.006

Cov 0.7838 0.1046 0.3241 0.6941 0.7844 0.1649 0.1761 0.9562 0.6251 0.3622 0.5952 0.6438

Perf 0.9134 0.9999 0.9997 0.8203 0.9084 0.9999 0.9999 0.4022 0.9996 0.9999 0.9999 0.9970

Mod 0.6294 0.1045 0.3238 0.4857 0.6688 0.1648 0.1761 0.4677 0.6240 0.3620 0.5951 0.6393

Avg. Size 26.74 1.355 4.893 19.69 34.87 2.119 3.922 111.4 8.963 2.151 8.328 14.02

Table 1. Benchmarking results for undirected graphs. PPC2 normalizes vertex

weights via out-degree while PPC1 does not.

wiki-Topcats email-Eu-core

n 1,791,489 1,005

nvals 28,511,807 25,571

PPC1 PPC2 PPC3 PPC4 MCL CDLP PPC1 PPC2 PPC3 PPC4 MCL CDLP

Time (s) 15.204 15.90 14.73 29.29 20.93 37.37 0.0102 0.0153 0.0118 0.0182 0.0185 0.0648

Cov 0.7908 0.0779 0.9378 0.2744 0.1639 0.9387 0.9971 0.2899 0.9609 0.3235 0.2545 1.000

Perf 0.6454 0.9999 0.3195 0.9934 0.9985 0.3008 0.1419 0.9722 0.2636 0.9666 0.9524 0.0621

Mod 0.2212 0.0775 0.1260 0.1652 0.1630 0.1357 0.0000 0.2422 0.0792 0.2698 0.2126 0.0000

Avg. Size 37.44 1.795 569.4 2.223 10.20 755.9 23.92 2.512 43.69 3.073 4.975 50.25

Table 2. Benchmarking results for directed graphs.
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